Simple random walk statistics. Part I: Discrete time results

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Vandermonde Matrices-Part I: Fundamental results

In this first part, analytical methods for finding moments of random Vandermonde matrices are developed. Vandermonde Matrices play an important role in signal processing and communication applications such as direction of arrival estimation, precoding or sparse sampling theory for example. Within this framework, we extend classical freeness results on random matrices with i.i.d entries and show...

متن کامل

Cut times for Simple Random Walk Cut times for Simple Random Walk

Let S(n) be a simple random walk taking values in Z d. A time n is called a cut time if S0; n] \ Sn + 1; 1) = ;: We show that in three dimensions the number of cut times less than n grows like n 1? where = d is the intersection exponent. As part of the proof we show that in two or three dimensions PfS0; n] \ Sn + 1; 2n] = ;g n ? ; where denotes that each side is bounded by a constant times the ...

متن کامل

Favourite sites of simple random walk

We survey the current status of the list of questions related to the favourite (or: most visited) sites of simple random walk on Z, raised by Pál Erdős and Pál Révész in the early eighties.

متن کامل

The Intersection Exponent For Simple Random Walk

The intersection exponent for simple random walk in two and three dimensions gives a measure of the rate of decay of the probability that paths do not intersect. In this paper we show that the intersection exponent for random walks is the same as that for Brownian motion and show in fact that the probability of nonintersection up to distance n is comparable (equal up to multiplicative constants...

متن کامل

Random Walk Approach to Simple Evolution Model

The dynamics of the avalanche width in the evolution model is described using a random walk picture. In this approach the critical exponents for avalanche distribution, τ , and avalanche average time, γ, are found to be the same as in the previous mean field approximation but SOC appear at λ critical = 2/3, which is very close to numerical value. A continuous time random walk is studied numeric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Probability

سال: 1996

ISSN: 0021-9002,1475-6072

DOI: 10.1017/s0021900200099745